๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ• ์— ๋Œ€ํ•œ ์ดํ•ด

๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•: ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ข…ํ•ฉ ๊ฐ€์ด๋“œ

๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•: ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ข…ํ•ฉ ๊ฐ€์ด๋“œ

๋ชฉ์ฐจ

  1. ์†Œ๊ฐœ
  2. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹
  3. ์ •๊ทœํ™” ๊ธฐ๋ฒ•
  4. ํ•™์Šต๋ฅ  ์ตœ์ ํ™”
  5. ๋ฐฐ์น˜ ์ •๊ทœํ™”
  6. ๋“œ๋กญ์•„์›ƒ
  7. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•
  8. ์ „์ด ํ•™์Šต
  9. ์•™์ƒ๋ธ” ๋ฐฉ๋ฒ•
  10. ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜
  11. ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ ํƒ์ƒ‰
  12. ๋ชจ๋ธ ๊ฐ€์ง€์น˜๊ธฐ
  13. ์–‘์žํ™”
  14. ์ง€์‹ ์ฆ๋ฅ˜
  15. ์‹ค์ œ ์‚ฌ๋ก€ ์—ฐ๊ตฌ
  16. ๋ฏธ๋ž˜ ์ „๋ง
  17. ๊ฒฐ๋ก 

1. ์†Œ๊ฐœ

๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ˜„๋Œ€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์˜ ํ•ต์‹ฌ์œผ๋กœ, ์ปดํ“จํ„ฐ ๋น„์ „, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ, ์Œ์„ฑ ์ธ์‹ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ˜์‹ ์ ์ธ ์„ฑ๊ณผ๋ฅผ ์ด๋ฃจ์–ด๋‚ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ์ตœ๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์„ธ์‹ฌํ•œ ์ตœ์ ํ™” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋“ค์€ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ณ , ํ•™์Šต ์†๋„๋ฅผ ๊ฐœ์„ ํ•˜๋ฉฐ, ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๋Š” ๋“ฑ ๋‹ค์–‘ํ•œ ๋ชฉ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๋ณธ ๊ฐ€์ด๋“œ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ตœ์ ํ™”์˜ ํ•ต์‹ฌ ๊ธฐ๋ฒ•๋“ค์„ ์ƒ์„ธํžˆ ์‚ดํŽด๋ณด๊ณ , ๊ฐ ๊ธฐ๋ฒ•์˜ ์›๋ฆฌ์™€ ์‹ค์ œ ์ ์šฉ ์‚ฌ๋ก€๋ฅผ ๊นŠ์ด ์žˆ๊ฒŒ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ตœ์‹  ์—ฐ๊ตฌ ๋™ํ–ฅ๊ณผ ์‹ค๋ฌด์—์„œ์˜ ์ ์šฉ ๋ฐฉ๋ฒ•์„ ํ•จ๊ป˜ ์ œ์‹œํ•˜์—ฌ, ์ด๋ก ๊ณผ ์‹ค์ œ๋ฅผ ์•„์šฐ๋ฅด๋Š” ์ข…ํ•ฉ์ ์ธ ์ดํ•ด๋ฅผ ๋•๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.

2. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹

ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์€ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์ตœ์ ํ™”ํ•˜๋Š” ํ•ต์‹ฌ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ž€ ๋ชจ๋ธ ํ•™์Šต ์ด์ „์— ์„ค์ •๋˜๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ, ํ•™์Šต๋ฅ , ๋ฐฐ์น˜ ํฌ๊ธฐ, ์—ํฌํฌ ์ˆ˜, ์€๋‹‰์ธต์˜ ์ˆ˜์™€ ํฌ๊ธฐ ๋“ฑ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ตœ์  ์กฐํ•ฉ์„ ์ฐพ๋Š” ๊ณผ์ •์ด ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ž…๋‹ˆ๋‹ค.

์ฃผ์š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋ฐฉ๋ฒ•

  • ๊ทธ๋ฆฌ๋“œ ์„œ์น˜(Grid Search): ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์กฐํ•ฉ์„ ์‹œ๋„ํ•˜๋Š” ๋ฐฉ๋ฒ•
  • ๋žœ๋ค ์„œ์น˜(Random Search): ๋ฌด์ž‘์œ„๋กœ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์กฐํ•ฉ์„ ์„ ํƒํ•˜์—ฌ ์‹œ๋„ํ•˜๋Š” ๋ฐฉ๋ฒ•
  • ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”(Bayesian Optimization): ์ด์ „ ์‹œ๋„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ ์‹œ๋„ํ•  ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฐฉ๋ฒ•
  • ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic Algorithm): ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์กฐํ•ฉ์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ•

ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋„๊ตฌ

ํšจ์œจ์ ์ธ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์„ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋„๊ตฌ๋“ค์ด ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค:

  • Optuna: ์ž๋™ํ™”๋œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ตœ์ ํ™” ํ”„๋ ˆ์ž„์›Œํฌ
  • Ray Tune: ๋ถ„์‚ฐ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
  • Hyperopt: ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

์‹ค์ œ ์‚ฌ๋ก€: AutoML

๊ตฌ๊ธ€์˜ AutoML์€ ์‹ ๊ฒฝ ๊ตฌ์กฐ ๊ฒ€์ƒ‰(Neural Architecture Search, NAS)์„ ํ†ตํ•ด ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜๊นŒ์ง€ ์ž๋™์œผ๋กœ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ 2018๋…„ CIFAR-10 ๋ฐ์ดํ„ฐ์…‹์—์„œ state-of-the-art ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ–ˆ์œผ๋ฉฐ, ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๊ฐ€ ์„ค๊ณ„ํ•œ ๋ชจ๋ธ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.


# Optuna๋ฅผ ์‚ฌ์šฉํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ์˜ˆ์‹œ
import optuna

def objective(trial):
    learning_rate = trial.suggest_loguniform('learning_rate', 1e-5, 1e-1)
    num_layers = trial.suggest_int('num_layers', 1, 5)
    hidden_units = trial.suggest_categorical('hidden_units', [32, 64, 128, 256])
    
    model = create_model(learning_rate, num_layers, hidden_units)
    accuracy = train_and_evaluate(model)
    return accuracy

study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)

print('Best trial:')
trial = study.best_trial
print('  Value: ', trial.value)
print('  Params: ')
for key, value in trial.params.items():
    print('    {}: {}'.format(key, value))
        

3. ์ •๊ทœํ™” ๊ธฐ๋ฒ•

์ •๊ทœํ™”๋Š” ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๊ณ  ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ์ค‘์š”ํ•œ ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ณผ์ ํ•ฉ์€ ๋ชจ๋ธ์ด ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์ง€๋‚˜์น˜๊ฒŒ ์ตœ์ ํ™”๋˜์–ด ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ํ˜„์ƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค. ์ •๊ทœํ™” ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ๊ณผ์ ํ•ฉ์„ ์–ต์ œํ•˜๊ณ  ๋ชจ๋ธ์ด ๋” robustํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.

์ฃผ์š” ์ •๊ทœํ™” ๊ธฐ๋ฒ•

  • L1 ์ •๊ทœํ™”(Lasso): ๊ฐ€์ค‘์น˜์˜ ์ ˆ๋Œ€๊ฐ’ ํ•ฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•
  • L2 ์ •๊ทœํ™”(Ridge): ๊ฐ€์ค‘์น˜์˜ ์ œ๊ณฑํ•ฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•
  • Elastic Net: L1๊ณผ L2 ์ •๊ทœํ™”๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ฐฉ๋ฒ•
  • Early Stopping: ๊ฒ€์ฆ ์„ธํŠธ์˜ ์„ฑ๋Šฅ์ด ๋” ์ด์ƒ ๊ฐœ์„ ๋˜์ง€ ์•Š์„ ๋•Œ ํ•™์Šต์„ ์ค‘๋‹จํ•˜๋Š” ๋ฐฉ๋ฒ•

์ •๊ทœํ™” ๊ธฐ๋ฒ•์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„

L1 ์ •๊ทœํ™”์™€ L2 ์ •๊ทœํ™”์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • L1 ์ •๊ทœํ™”: \( L_1 = \lambda \sum_{i=1}^n |w_i| \)
  • L2 ์ •๊ทœํ™”: \( L_2 = \lambda \sum_{i=1}^n w_i^2 \)

์—ฌ๊ธฐ์„œ \( \lambda \)๋Š” ์ •๊ทœํ™” ๊ฐ•๋„๋ฅผ ์กฐ์ ˆํ•˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค.

์‹ค์ œ ์‚ฌ๋ก€: ResNet

ResNet๊ณผ ๊ฐ™์€ ์ตœ์‹  CNN ์•„ํ‚คํ…์ฒ˜์—์„œ๋Š” L2 ์ •๊ทœํ™”(๊ฐ€์ค‘์น˜ ๊ฐ์‡ )๋ฅผ ํ†ตํ•ด ๊ณผ์ ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ImageNet ๋Œ€ํšŒ์—์„œ ์šฐ์Šนํ•œ ResNet์€ L2 ์ •๊ทœํ™”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊นŠ์€ ๋„คํŠธ์›Œํฌ์˜ ํ•™์Šต์„ ์•ˆ์ •ํ™”ํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ L2 ์ •๊ทœํ™” ์ ์šฉ ์˜ˆ์‹œ
import torch.nn as nn
import torch.optim as optim

model = nn.Sequential(...)
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)  # weight_decay๋Š” L2 ์ •๊ทœํ™” ๊ฐ•๋„
        

4. ํ•™์Šต๋ฅ  ์ตœ์ ํ™”

ํ•™์Šต๋ฅ ์€ ๋ชจ๋ธ์ด ๊ฐ ํ•™์Šต ๋‹จ๊ณ„์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์–ผ๋งˆ๋‚˜ ํฌ๊ฒŒ ์—…๋ฐ์ดํŠธํ• ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ์ค‘์š”ํ•œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค. ์ ์ ˆํ•œ ํ•™์Šต๋ฅ  ์„ค์ •์€ ๋ชจ๋ธ ํ•™์Šต์˜ ์„ฑํŒจ๋ฅผ ์ขŒ์šฐํ•  ๋งŒํผ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต๋ฅ ์ด ๋„ˆ๋ฌด ๋†’์œผ๋ฉด ์ตœ์ ์ ์„ ์ง€๋‚˜์น˜๊ฒŒ ๋˜๊ณ , ๋„ˆ๋ฌด ๋‚ฎ์œผ๋ฉด ํ•™์Šต์ด ๋งค์šฐ ๋А๋ฆฌ๊ฑฐ๋‚˜ ์ง€์—ญ ์ตœ์ ์ ์— ๊ฐ‡ํž ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ•™์Šต๋ฅ  ์ตœ์ ํ™” ๊ธฐ๋ฒ•

  • ํ•™์Šต๋ฅ  ์Šค์ผ€์ค„๋ง: ํ•™์Šต ๊ณผ์ •์—์„œ ํ•™์Šต๋ฅ ์„ ์ ์ง„์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•
  • ์ˆœํ™˜ ํ•™์Šต๋ฅ : ํ•™์Šต๋ฅ ์„ ์ฃผ๊ธฐ์ ์œผ๋กœ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•
  • ์ ์‘์  ํ•™์Šต๋ฅ  ๋ฐฉ๋ฒ•: Adam, RMSprop ๋“ฑ ํ•™์Šต ๊ณผ์ •์—์„œ ํ•™์Šต๋ฅ ์„ ์ž๋™์œผ๋กœ ์กฐ์ •ํ•˜๋Š” ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • Layer-wise Adaptive Rate Scaling (LARS): ๊ฐ ์ธต๋งˆ๋‹ค ๋‹ค๋ฅธ ํ•™์Šต๋ฅ ์„ ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•

ํ•™์Šต๋ฅ  ์Šค์ผ€์ค„๋ง ์˜ˆ์‹œ

์—ํฌํฌ ํ•™์Šต๋ฅ 
1-30 0.1
31-60 0.01
61-90 0.001

์‹ค์ œ ์‚ฌ๋ก€: BERT

๊ตฌ๊ธ€์˜ BERT ๋ชจ๋ธ ํ•™์Šต์—์„œ๋Š” ์„ ํ˜• ํ•™์Šต๋ฅ  ๊ฐ์†Œ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ดˆ๊ธฐ์—๋Š” ๋†’์€ ํ•™์Šต๋ฅ ๋กœ ๋น ๋ฅด๊ฒŒ ํ•™์Šตํ•˜๋‹ค๊ฐ€ ์ ์ฐจ ํ•™์Šต๋ฅ ์„ ๋‚ฎ์ถ”์–ด ๋ฏธ์„ธํ•œ ์กฐ์ •์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ ํ•™์Šต๋ฅ  ์Šค์ผ€์ค„๋Ÿฌ ์‚ฌ์šฉ ์˜ˆ์‹œ
from torch.optim.lr_scheduler import StepLR

optimizer = optim.Adam(model.parameters(), lr=0.1)
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

for epoch in range(90):
    train(model, optimizer)
    scheduler.step()
        

5. ๋ฐฐ์น˜ ์ •๊ทœํ™”

๋ฐฐ์น˜ ์ •๊ทœํ™”๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต ์†๋„๋ฅผ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์•ˆ์ •์„ฑ์„ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. 2015๋…„ Sergey Ioffe์™€ Christian Szegedy๊ฐ€ ์ œ์•ˆํ•œ ์ด ๋ฐฉ๋ฒ•์€ ๊ฐ ๋ฏธ๋‹ˆ๋ฐฐ์น˜์˜ ์ž…๋ ฅ์„ ์ •๊ทœํ™”ํ•จ์œผ๋กœ์จ ๋‚ด๋ถ€ ๊ณต๋ณ€๋Ÿ‰ ๋ณ€ํ™”(Internal Covariate Shift) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.

๋ฐฐ์น˜ ์ •๊ทœํ™”์˜ ์ฃผ์š” ์ด์ 

  • ํ•™์Šต ์†๋„ ํ–ฅ์ƒ: ๋” ๋†’์€ ํ•™์Šต๋ฅ  ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•ด์ ธ ํ•™์Šต ์†๋„๊ฐ€ ๋นจ๋ผ์ง‘๋‹ˆ๋‹ค.
  • ์ดˆ๊ธฐํ™”์— ๋Œ€ํ•œ ์˜์กด์„ฑ ๊ฐ์†Œ: ๊ฐ€์ค‘์น˜ ์ดˆ๊ธฐํ™”์— ๋œ ๋ฏผ๊ฐํ•ด์ง‘๋‹ˆ๋‹ค.
  • ์ •๊ทœํ™” ํšจ๊ณผ: ๊ณผ์ ํ•ฉ์„ ์–ด๋А ์ •๋„ ๋ฐฉ์ง€ํ•˜๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ทธ๋ž˜๋””์–ธํŠธ ํ๋ฆ„ ๊ฐœ์„ : ๊นŠ์€ ๋„คํŠธ์›Œํฌ์—์„œ ๊ทธ๋ž˜๋””์–ธํŠธ๊ฐ€ ๋” ์ž˜ ์ „ํŒŒ๋ฉ๋‹ˆ๋‹ค.

๋ฐฐ์น˜ ์ •๊ทœํ™”์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„

๋ฐฐ์น˜ ์ •๊ทœํ™”๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ณผ์ •์„ ๊ฑฐ์นฉ๋‹ˆ๋‹ค:

  1. ๋ฏธ๋‹ˆ๋ฐฐ์น˜์˜ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ ๊ณ„์‚ฐ: \( \mu_B = \frac{1}{m} \sum_{i=1}^m x_i, \sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2 \)
  2. ์ •๊ทœํ™”: \( \hat{x_i} = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \)
  3. ์Šค์ผ€์ผ ๋ฐ ์‹œํ”„ํŠธ: \( y_i = \gamma \hat{x_i} + \beta \)

์—ฌ๊ธฐ์„œ \( \gamma \)์™€ \( \beta \)๋Š” ํ•™์Šต ๊ฐ€๋Šฅํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค.

์‹ค์ œ ์‚ฌ๋ก€: ResNet

ImageNet ๋Œ€ํšŒ์—์„œ ์šฐ์Šนํ•œ ResNet์€ ๋ฐฐ์น˜ ์ •๊ทœํ™”๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ๊นŠ์€ ๋„คํŠธ์›Œํฌ์˜ ํ•™์Šต์„ ์•ˆ์ •ํ™”ํ•˜๊ณ  ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฐฐ์น˜ ์ •๊ทœํ™” ๋•๋ถ„์— ResNet์€ 100์ธต ์ด์ƒ์˜ ๊นŠ์€ ๋„คํŠธ์›Œํฌ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ ๋ฐฐ์น˜ ์ •๊ทœํ™” ์‚ฌ์šฉ ์˜ˆ์‹œ
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        return x
        

6. ๋“œ๋กญ์•„์›ƒ

๋“œ๋กญ์•„์›ƒ์€ ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๋Š” ๊ฐ•๋ ฅํ•œ ์ •๊ทœํ™” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. 2014๋…„ Nitish Srivastava ๋“ฑ์ด ์ œ์•ˆํ•œ ์ด ๋ฐฉ๋ฒ•์€ ํ•™์Šต ์ค‘ ๋ฌด์ž‘์œ„๋กœ ์ผ์ • ๋น„์œจ์˜ ๋‰ด๋Ÿฐ์„ ๋น„ํ™œ์„ฑํ™”ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์ด ํŠน์ • ํŠน์„ฑ์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•˜๋Š” ๊ฒƒ์„ ๋ง‰์Šต๋‹ˆ๋‹ค.

๋“œ๋กญ์•„์›ƒ์˜ ์ฃผ์š” ์ด์ 

  • ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€: ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.
  • ์•™์ƒ๋ธ” ํšจ๊ณผ: ์—ฌ๋Ÿฌ ๋‹ค๋ฅธ ๋„คํŠธ์›Œํฌ๋ฅผ ํ•™์Šต์‹œํ‚ค๋Š” ํšจ๊ณผ๋ฅผ ๋ƒ…๋‹ˆ๋‹ค.
  • ํŠน์„ฑ ๊ณตํ•™: ๋” robustํ•œ ํŠน์„ฑ์„ ํ•™์Šตํ•˜๋„๋ก ์œ ๋„ํ•ฉ๋‹ˆ๋‹ค.
  • ๊ณ„์‚ฐ ํšจ์œจ์„ฑ: ํ•™์Šต ์‹œ ์ผ๋ถ€ ๋‰ด๋Ÿฐ๋งŒ ์‚ฌ์šฉํ•˜๋ฏ€๋กœ ๊ณ„์‚ฐ ๋น„์šฉ์ด ์ค„์–ด๋“ญ๋‹ˆ๋‹ค.

๋“œ๋กญ์•„์›ƒ์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„

๋“œ๋กญ์•„์›ƒ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค:

  1. ๊ฐ ๋‰ด๋Ÿฐ์— ๋Œ€ํ•ด ํ™•๋ฅ  \( p \)๋กœ ๋งˆ์Šคํฌ ์ƒ์„ฑ: \( m_j \sim \text{Bernoulli}(p) \)
  2. ๋‰ด๋Ÿฐ ์ถœ๋ ฅ์— ๋งˆ์Šคํฌ ์ ์šฉ: \( y_j = m_j * x_j \)
  3. ํ…Œ์ŠคํŠธ ์‹œ์—๋Š” ๊ธฐ๋Œ“๊ฐ’ ์กฐ์ •: \( y = p * x \)

์‹ค์ œ ์‚ฌ๋ก€: BERT

์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์˜ BERT ๋ชจ๋ธ์€ ๋“œ๋กญ์•„์›ƒ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณผ์ ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. BERT์˜ ๊ฐ ํŠธ๋žœ์Šคํฌ๋จธ ์ธต์— ๋“œ๋กญ์•„์›ƒ์„ ์ ์šฉํ•จ์œผ๋กœ์จ, ๋ชจ๋ธ์ด ํŠน์ • ๋‹จ์–ด๋‚˜ ๋ฌธ๋งฅ์— ๊ณผ๋„ํ•˜๊ฒŒ ์˜์กดํ•˜์ง€ ์•Š๊ณ  ๋” ์ผ๋ฐ˜ํ™”๋œ ์–ธ์–ด ์ดํ•ด ๋Šฅ๋ ฅ์„ ๊ฐ–์ถœ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ ๋“œ๋กญ์•„์›ƒ ์‚ฌ์šฉ ์˜ˆ์‹œ
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 256)
        self.fc2 = nn.Linear(256, 10)
        self.dropout = nn.Dropout(0.5)
        
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = self.fc2(x)
        return x
        

7. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•

๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์€ ๊ธฐ์กด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹์„ ์ธ์œ„์ ์œผ๋กœ ํ™•์žฅํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๊ณผ์ ํ•ฉ์„ ๋ฐฉ์ง€ํ•˜๋Š” ๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ์ƒํ™ฉ์—์„œ ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•

  • ์ด๋ฏธ์ง€ ํšŒ์ „, ๋ฐ˜์ „, ํฌ๋กญ: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ๋…ธ์ด์ฆˆ ์ถ”๊ฐ€: ์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ์ž์ฃผ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ํ…์ŠคํŠธ ๋ฐฑํŠธ๋žœ์Šฌ๋ ˆ์ด์…˜: ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.
  • Mixup: ์„œ๋กœ ๋‹ค๋ฅธ ํด๋ž˜์Šค์˜ ์ƒ˜ํ”Œ์„ ํ˜ผํ•ฉํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.
  • CutMix: ์ด๋ฏธ์ง€์˜ ์ผ๋ถ€๋ฅผ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€๋กœ ๋Œ€์ฒดํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ด์ 

  1. ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ ์ฆ๊ฐ€
  2. ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ ํ–ฅ์ƒ
  3. ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€
  4. ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ ํ•ด๊ฒฐ

์‹ค์ œ ์‚ฌ๋ก€: AutoAugment

๊ตฌ๊ธ€์˜ AutoAugment๋Š” ๊ฐ•ํ™”ํ•™์Šต์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ์ •์ฑ…์„ ์ž๋™์œผ๋กœ ์ฐพ์•„๋ƒ…๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ CIFAR-10, CIFAR-100, ImageNet ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—์„œ state-of-the-art ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ์‚ฌ์šฉ ์˜ˆ์‹œ
from torchvision import transforms

transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(10),
    transforms.RandomResizedCrop(224),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

train_dataset = datasets.ImageFolder(root='./data', transform=transform)
        

8. ์ „์ด ํ•™์Šต

์ „์ด ํ•™์Šต์€ ํ•œ ๋„๋ฉ”์ธ์—์„œ ํ•™์Šต๋œ ์ง€์‹์„ ๋‹ค๋ฅธ ๊ด€๋ จ ๋„๋ฉ”์ธ์— ์ ์šฉํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ํŠนํžˆ ๋ชฉํ‘œ ๋„๋ฉ”์ธ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•  ๋•Œ ๋งค์šฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ „์ด ํ•™์Šต์„ ํ†ตํ•ด ๋ชจ๋ธ์€ ๋” ๋น ๋ฅด๊ฒŒ ํ•™์Šตํ•˜๊ณ , ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ „์ด ํ•™์Šต์˜ ์ฃผ์š” ๋ฐฉ๋ฒ•

  • ํŠน์„ฑ ์ถ”์ถœ: ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ๋งˆ์ง€๋ง‰ ์ธต๋งŒ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ๋งž๊ฒŒ ์žฌํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
  • ๋ฏธ์„ธ ์กฐ์ •: ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ์ผ๋ถ€ ๋˜๋Š” ์ „์ฒด ์ธต์„ ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ์— ๋งž๊ฒŒ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
  • ์ ์ง„์  ํ•™์Šต: ์ƒˆ๋กœ์šด ํƒœ์Šคํฌ๋ฅผ ํ•™์Šตํ•  ๋•Œ ์ด์ „ ํƒœ์Šคํฌ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.

์ „์ด ํ•™์Šต์˜ ์ด์ 

  1. ํ•™์Šต ์‹œ๊ฐ„ ๋‹จ์ถ•
  2. ์ ์€ ๋ฐ์ดํ„ฐ๋กœ๋„ ๋†’์€ ์„ฑ๋Šฅ ๋‹ฌ์„ฑ
  3. ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ ํ–ฅ์ƒ
  4. ์ƒˆ๋กœ์šด ๋„๋ฉ”์ธ์— ๋Œ€ํ•œ ๋น ๋ฅธ ์ ์‘

์‹ค์ œ ์‚ฌ๋ก€: GPT

OpenAI์˜ GPT (Generative Pre-trained Transformer) ๋ชจ๋ธ์€ ๋Œ€๊ทœ๋ชจ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์ „ ํ•™์Šตํ•œ ํ›„, ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ํƒœ์Šคํฌ์— ๋ฏธ์„ธ ์กฐ์ •๋˜์–ด ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ ์€ ์–‘์˜ ๋ ˆ์ด๋ธ”๋œ ๋ฐ์ดํ„ฐ๋กœ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ ์ „์ด ํ•™์Šต ์‚ฌ์šฉ ์˜ˆ์‹œ (ResNet50์„ ์‚ฌ์šฉํ•œ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜)
import torchvision.models as models
import torch.nn as nn

model = models.resnet50(pretrained=True)
for param in model.parameters():
    param.requires_grad = False

num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)  # 10์€ ์ƒˆ๋กœ์šด ํด๋ž˜์Šค์˜ ์ˆ˜

optimizer = optim.Adam(model.fc.parameters(), lr=0.001)
        

9. ์•™์ƒ๋ธ” ๋ฐฉ๋ฒ•

์•™์ƒ๋ธ” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋” ๋‚˜์€ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์–ป๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ฐœ๋ณ„ ๋ชจ๋ธ์˜ ์•ฝ์ ์„ ์ƒํ˜ธ ๋ณด์™„ํ•˜๊ณ , ์˜ˆ์ธก์˜ ๋ถ„์‚ฐ์„ ์ค„์—ฌ ๋” ์•ˆ์ •์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ์•™์ƒ๋ธ” ๋ฐฉ๋ฒ•

  • ๋ฐฐ๊น…(Bagging): ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šต์‹œํ‚ค๊ณ  ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ท ๋‚ด๋Š” ๋ฐฉ๋ฒ•
  • ๋ถ€์ŠคํŒ…(Boosting): ์ด์ „ ๋ชจ๋ธ์˜ ์˜ค๋ฅ˜๋ฅผ ๋ณด์™„ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ˆœ์ฐจ์ ์œผ๋กœ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•
  • ์Šคํƒœํ‚น(Stacking): ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉ”ํƒ€ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•
  • ๋ธ”๋ Œ๋”ฉ(Blending): ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ ๊ฐ€์ค‘ ํ‰๊ท ํ•˜๋Š” ๋ฐฉ๋ฒ•

์•™์ƒ๋ธ” ๋ฐฉ๋ฒ•์˜ ์ด์ 

  1. ์˜ˆ์ธก ์„ฑ๋Šฅ ํ–ฅ์ƒ
  2. ๊ณผ์ ํ•ฉ ์œ„ํ—˜ ๊ฐ์†Œ
  3. ๋ชจ๋ธ ์•ˆ์ •์„ฑ ์ฆ๊ฐ€
  4. ๋ณต์žกํ•œ ํŒจํ„ด ํ•™์Šต ๊ฐ€๋Šฅ

์‹ค์ œ ์‚ฌ๋ก€: Kaggle ๋Œ€ํšŒ

Kaggle ๋Œ€ํšŒ์—์„œ ์ƒ์œ„๊ถŒ์— ์˜ค๋ฅธ ์†”๋ฃจ์…˜๋“ค์€ ๋Œ€๋ถ€๋ถ„ ์•™์ƒ๋ธ” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, 2019๋…„ Google Landmark Recognition ๋Œ€ํšŒ์˜ ์šฐ์Šน ์†”๋ฃจ์…˜์€ ์—ฌ๋Ÿฌ CNN ๋ชจ๋ธ์˜ ์•™์ƒ๋ธ”์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ๊ณ ์˜ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.


# ๊ฐ„๋‹จํ•œ ์•™์ƒ๋ธ” ๋ฐฉ๋ฒ• ์˜ˆ์‹œ (ํ‰๊ท )
import numpy as np

predictions = []
for model in models:
    pred = model.predict(X_test)
    predictions.append(pred)

ensemble_pred = np.mean(predictions, axis=0)
        

10. ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜

์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต ๊ณผ์ •์„ ํšจ์œจ์ ์œผ๋กœ ๋งŒ๋“œ๋Š” ํ•ต์‹ฌ ์š”์†Œ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๋ฐฉ์‹์„ ๊ฒฐ์ •ํ•˜๋ฉฐ, ํ•™์Šต ์†๋„์™€ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค.

์ฃผ์š” ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜

  • ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(SGD): ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜
  • Momentum: ์ด์ „ ๊ทธ๋ž˜๋””์–ธํŠธ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต์„ ๊ฐ€์†ํ™”
  • AdaGrad: ํŒŒ๋ผ๋ฏธํ„ฐ๋ณ„๋กœ ํ•™์Šต๋ฅ ์„ ์กฐ์ •
  • RMSprop: AdaGrad๋ฅผ ๊ฐœ์„ ํ•˜์—ฌ ํ•™์Šต๋ฅ  ๊ฐ์†Œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ
  • Adam: Momentum๊ณผ RMSprop์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉ

์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํƒ ๊ธฐ์ค€

  1. ์ˆ˜๋ ด ์†๋„
  2. ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ์‚ฌํ•ญ
  3. ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ๋ฏผ๊ฐ๋„
  4. ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ

์‹ค์ œ ์‚ฌ๋ก€: Adam์˜ ์„ฑ๊ณต

Adam ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋งŽ์€ ๋”ฅ๋Ÿฌ๋‹ ํƒœ์Šคํฌ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ์ปดํ“จํ„ฐ ๋น„์ „๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ Adam์€ ๋น ๋ฅธ ์ˆ˜๋ ด ์†๋„์™€ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์œผ๋กœ ์ธ๊ธฐ๋ฅผ ์–ป๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.


# PyTorch์—์„œ Adam ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‚ฌ์šฉ ์˜ˆ์‹œ
import torch.optim as optim

model = Net()
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))

for epoch in range(num_epochs):
    for batch in dataloader:
        optimizer.zero_grad()
        loss = criterion(model(batch), targets)
        loss.backward()
        optimizer.step()
        

์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ ํƒ์ƒ‰(Neural Architecture Search, NAS)์€ ์ตœ์ ์˜ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ž๋™์œผ๋กœ ์ฐพ์•„๋‚ด๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€์˜ ์ง๊ด€๊ณผ ๊ฒฝํ—˜์— ์˜์กดํ•˜๋˜ ์‹ ๊ฒฝ๋ง ์„ค๊ณ„ ๊ณผ์ •์„ ์ž๋™ํ™”ํ•˜์—ฌ, ๋” ํšจ์œจ์ ์ด๊ณ  ์„ฑ๋Šฅ์ด ๋›ฐ์–ด๋‚œ ๋ชจ๋ธ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

NAS์˜ ์ฃผ์š” ์ ‘๊ทผ ๋ฐฉ์‹

  • ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ NAS: ๊ฐ•ํ™”ํ•™์Šต ์—์ด์ „ํŠธ๊ฐ€ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ํ‰๊ฐ€
  • ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ NAS: ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ง„ํ™”์‹œํ‚ด
  • ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ NAS: ๊ตฌ์กฐ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์—ฐ์†์ ์œผ๋กœ ์™„ํ™”ํ•˜์—ฌ ๊ทธ๋ž˜๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ์ˆ˜ํ–‰

NAS์˜ ์žฅ๋‹จ์ 

์žฅ์  ๋‹จ์ 
์ธ๊ฐ„ ์„ค๊ณ„์ž๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ๊ตฌ์กฐ ๋ฐœ๊ฒฌ ๊ฐ€๋Šฅ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋งค์šฐ ๋†’์Œ
ํŠน์ • ํƒœ์Šคํฌ์— ์ตœ์ ํ™”๋œ ๊ตฌ์กฐ ์ฐพ๊ธฐ ๊ฐ€๋Šฅ ํƒ์ƒ‰ ๊ณต๊ฐ„ ์„ค๊ณ„์˜ ์–ด๋ ค์›€
์ž๋™ํ™”๋œ ๋ชจ๋ธ ์„ค๊ณ„ ํ”„๋กœ์„ธ์Šค ๊ฒฐ๊ณผ ํ•ด์„์˜ ์–ด๋ ค์›€

์‹ค์ œ ์‚ฌ๋ก€: EfficientNet

Google AI์—์„œ ๊ฐœ๋ฐœํ•œ EfficientNet์€ NAS๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ CNN์˜ ๊นŠ์ด, ๋„ˆ๋น„, ํ•ด์ƒ๋„๋ฅผ ๋™์‹œ์— ์ตœ์ ํ™”ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ๋ชจ๋ธ๋“ค๋ณด๋‹ค ๋” ์ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.

12. ๋ชจ๋ธ ๊ฐ€์ง€์น˜๊ธฐ

๋ชจ๋ธ ๊ฐ€์ง€์น˜๊ธฐ(Pruning)๋Š” ํ•™์Šต๋œ ์‹ ๊ฒฝ๋ง์—์„œ ์ค‘์š”๋„๊ฐ€ ๋‚ฎ์€ ์—ฐ๊ฒฐ์ด๋‚˜ ๋‰ด๋Ÿฐ์„ ์ œ๊ฑฐํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๊ณ  ์ถ”๋ก  ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋•Œ๋กœ๋Š” ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ๋„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ฃผ์š” ๊ฐ€์ง€์น˜๊ธฐ ๋ฐฉ๋ฒ•

  • ๊ฐ€์ค‘์น˜ ๊ฐ€์ง€์น˜๊ธฐ: ์ ˆ๋Œ€๊ฐ’์ด ์ž‘์€ ๊ฐ€์ค‘์น˜๋ฅผ ์ œ๊ฑฐ
  • ์œ ๋‹› ๊ฐ€์ง€์น˜๊ธฐ: ์ „์ฒด ๋‰ด๋Ÿฐ์ด๋‚˜ ํ•„ํ„ฐ๋ฅผ ์ œ๊ฑฐ
  • ๊ตฌ์กฐ์  ๊ฐ€์ง€์น˜๊ธฐ: ํŠน์ • ํŒจํ„ด์ด๋‚˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์—ฐ๊ฒฐ์„ ์ œ๊ฑฐ

๊ฐ€์ง€์น˜๊ธฐ์˜ ์ด์ 

  1. ๋ชจ๋ธ ํฌ๊ธฐ ๊ฐ์†Œ
  2. ์ถ”๋ก  ์†๋„ ํ–ฅ์ƒ
  3. ๊ณผ์ ํ•ฉ ๊ฐ์†Œ
  4. ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ์ฆ๊ฐ€

์‹ค์ œ ์‚ฌ๋ก€: The Lottery Ticket Hypothesis

MIT ์—ฐ๊ตฌ์ง„์ด ์ œ์•ˆํ•œ "The Lottery Ticket Hypothesis"๋Š” ํฐ ์‹ ๊ฒฝ๋ง ๋‚ด์— ์ž‘๊ณ  ํฌ์†Œํ•œ ํ•˜์œ„ ๋„คํŠธ์›Œํฌ๊ฐ€ ์กด์žฌํ•˜๋ฉฐ, ์ด ๋„คํŠธ์›Œํฌ๋งŒ์œผ๋กœ๋„ ์›๋ž˜ ๋„คํŠธ์›Œํฌ์™€ ๋น„์Šทํ•œ ์„ฑ๋Šฅ์„ ๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ด๋ก ์ž…๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ํšจ์œจ์ ์ธ ๋ชจ๋ธ ๊ฐ€์ง€์น˜๊ธฐ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ†ต์ฐฐ์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค.

13. ์–‘์žํ™”

์–‘์žํ™”(Quantization)๋Š” ์‹ ๊ฒฝ๋ง์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ํ™œ์„ฑํ™” ๊ฐ’์„ ๋” ์ ์€ ๋น„ํŠธ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๊ณ  ์ถ”๋ก  ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ๋ชจ๋ฐ”์ผ์ด๋‚˜ ์ž„๋ฒ ๋””๋“œ ๋””๋ฐ”์ด์Šค์—์„œ์˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๋ฐฐํฌ์— ๋งค์šฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.

์–‘์žํ™” ๋ฐฉ๋ฒ•

  • ๋™์  ๋ฒ”์œ„ ์–‘์žํ™”: ์‹คํ–‰ ์‹œ๊ฐ„์— ๋™์ ์œผ๋กœ ์–‘์žํ™” ์ˆ˜ํ–‰
  • ์ •์  ์–‘์žํ™”: ๋ชจ๋ธ ๋ณ€ํ™˜ ์‹œ ๋ฏธ๋ฆฌ ์–‘์žํ™” ์ˆ˜ํ–‰
  • ์–‘์žํ™” ์ธ์‹ ํ•™์Šต: ํ•™์Šต ๊ณผ์ •์—์„œ ์–‘์žํ™”๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋ธ ์ตœ์ ํ™”

์–‘์žํ™”์˜ ์ด์ 

  1. ๋ชจ๋ธ ํฌ๊ธฐ ๊ฐ์†Œ
  2. ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๊ฐ์†Œ
  3. ์ถ”๋ก  ์†๋„ ํ–ฅ์ƒ
  4. ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ์ฆ๊ฐ€

์‹ค์ œ ์‚ฌ๋ก€: TensorFlow Lite

Google์˜ TensorFlow Lite๋Š” ๋ชจ๋ฐ”์ผ ๋ฐ ์ž„๋ฒ ๋””๋“œ ๋””๋ฐ”์ด์Šค๋ฅผ ์œ„ํ•œ ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, ๋‹ค์–‘ํ•œ ์–‘์žํ™” ๊ธฐ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ํฌ๊ฒŒ ์ค„์ด๋ฉด์„œ๋„ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

14. ์ง€์‹ ์ฆ๋ฅ˜

์ง€์‹ ์ฆ๋ฅ˜(Knowledge Distillation)๋Š” ํฐ ๋ชจ๋ธ(๊ต์‚ฌ ๋ชจ๋ธ)์˜ ์ง€์‹์„ ์ž‘์€ ๋ชจ๋ธ(ํ•™์ƒ ๋ชจ๋ธ)๋กœ ์ „๋‹ฌํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ž‘์€ ๋ชจ๋ธ์ด ํฐ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ๊ทผ์ ‘ํ•˜๋ฉด์„œ๋„ ๋” ํšจ์œจ์ ์œผ๋กœ ๋™์ž‘ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ง€์‹ ์ฆ๋ฅ˜์˜ ์ฃผ์š” ๊ฐœ๋…

  • ์†Œํ”„ํŠธ ํƒ€๊ฒŸ: ๊ต์‚ฌ ๋ชจ๋ธ์˜ ์†Œํ”„ํŠธ๋งฅ์Šค ์ถœ๋ ฅ์„ ์‚ฌ์šฉ
  • ์˜จ๋„ ์Šค์ผ€์ผ๋ง: ์†Œํ”„ํŠธ๋งฅ์Šค์˜ ์˜จ๋„๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ง€์‹ ์ „๋‹ฌ ์กฐ์ •
  • ์ค‘๊ฐ„ ํ‘œํ˜„ ์ „๋‹ฌ: ์ค‘๊ฐ„ ์ธต์˜ ํŠน์„ฑ ๋งต์„ ์ „๋‹ฌํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ์ง€์‹ ์ „๋‹ฌ

์ง€์‹ ์ฆ๋ฅ˜์˜ ์ด์ 

  1. ๋ชจ๋ธ ์••์ถ•
  2. ์ถ”๋ก  ์†๋„ ํ–ฅ์ƒ
  3. ์•™์ƒ๋ธ” ํšจ๊ณผ
  4. ๋ฐ์ดํ„ฐ ํšจ์œจ์„ฑ ์ฆ๊ฐ€

์‹ค์ œ ์‚ฌ๋ก€: DistilBERT

Hugging Face์—์„œ ๊ฐœ๋ฐœํ•œ DistilBERT๋Š” BERT ๋ชจ๋ธ์˜ ์ง€์‹์„ ์ฆ๋ฅ˜ํ•˜์—ฌ ๋งŒ๋“  ๊ฒฝ๋Ÿ‰ํ™” ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. DistilBERT๋Š” ์›๋ž˜ BERT ๋ชจ๋ธ์˜ 40% ํฌ๊ธฐ๋กœ 97%์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ 60% ๋” ๋น ๋ฅธ ์ถ”๋ก  ์†๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

15. ์‹ค์ œ ์‚ฌ๋ก€ ์—ฐ๊ตฌ

์ง€๊ธˆ๊นŒ์ง€ ์‚ดํŽด๋ณธ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋“ค์ด ์‹ค์ œ ํ”„๋กœ์ ํŠธ์—์„œ ์–ด๋–ป๊ฒŒ ์ ์šฉ๋˜๊ณ  ์žˆ๋Š”์ง€ ๋ช‡ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. Google์˜ BERT ์ตœ์ ํ™”

Google์€ BERT ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐ๋ฒ•๋“ค์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค:

  • ํ•™์Šต๋ฅ  ์Šค์ผ€์ค„๋ง: ์„ ํ˜• ๊ฐ์†Œ ์Šค์ผ€์ค„์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šต ์•ˆ์ •์„ฑ ํ–ฅ์ƒ
  • ๋ฐฐ์น˜ ์ •๊ทœํ™”: ๊ฐ ํŠธ๋žœ์Šคํฌ๋จธ ์ธต์— ์ ์šฉํ•˜์—ฌ ํ•™์Šต ์†๋„ ๊ฐœ์„ 
  • ๋“œ๋กญ์•„์›ƒ: ๊ณผ์ ํ•ฉ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด ๊ฐ ์ธต์— ์ ์šฉ
  • Adam ์ตœ์ ํ™”: ํšจ์œจ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์—…๋ฐ์ดํŠธ๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ

2. OpenAI์˜ GPT-3 ํ•™์Šต

GPT-3์˜ ๋Œ€๊ทœ๋ชจ ํ•™์Šต์„ ์œ„ํ•ด OpenAI๊ฐ€ ์‚ฌ์šฉํ•œ ๊ธฐ๋ฒ•๋“ค:

  • ๋ชจ๋ธ ๋ณ‘๋ ฌํ™”: ์—ฌ๋Ÿฌ GPU์— ๊ฑธ์ณ ๋ชจ๋ธ์„ ๋ถ„์‚ฐํ•˜์—ฌ ํ•™์Šต
  • ํ˜ผํ•ฉ ์ •๋ฐ€๋„ ํ•™์Šต: FP16๊ณผ FP32๋ฅผ ํ˜ผํ•ฉํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ ์ฆ๊ฐ€
  • ๊ทธ๋ž˜๋””์–ธํŠธ ๋ˆ„์ : ๋” ํฐ ๋ฐฐ์น˜ ํฌ๊ธฐ ํšจ๊ณผ๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ

3. Facebook์˜ ResNeXt ๊ฐœ๋ฐœ

Facebook AI Research ํŒ€์ด ResNeXt ๊ฐœ๋ฐœ ์‹œ ์‚ฌ์šฉํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋“ค:

  • ์นด๋””๋„๋ฆฌํ‹ฐ ์ฆ๊ฐ€: ๋ชจ๋ธ์˜ ํ‘œํ˜„๋ ฅ์„ ๋†’์ด๋ฉด์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ œํ•œ
  • ๊ทธ๋ฃน ์ปจ๋ณผ๋ฃจ์…˜: ๊ณ„์‚ฐ ํšจ์œจ์„ฑ ์ฆ๊ฐ€
  • ๋ฐฐ์น˜ ์ •๊ทœํ™”: ๊ฐ ์ปจ๋ณผ๋ฃจ์…˜ ์ธต ํ›„์— ์ ์šฉํ•˜์—ฌ ํ•™์Šต ์•ˆ์ •ํ™”

๋”ฅ๋Ÿฌ๋‹ ์ตœ์ ํ™” ๋ถ„์•ผ๋Š” ๊ณ„์†ํ•ด์„œ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•ž์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํŠธ๋ Œ๋“œ๊ฐ€ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค:

  • ์ž๋™ํ™”๋œ ์ตœ์ ํ™”: AutoML, Neural Architecture Search ๋“ฑ์˜ ๊ธฐ์ˆ ์ด ๋”์šฑ ๋ฐœ์ „ํ•˜์—ฌ ๋ชจ๋ธ ์„ค๊ณ„์™€ ์ตœ์ ํ™” ๊ณผ์ •์„ ์ž๋™ํ™”ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • ํ•˜๋“œ์›จ์–ด ํŠนํ™” ์ตœ์ ํ™”: ํŠน์ • ํ•˜๋“œ์›จ์–ด ํ”Œ๋žซํผ(์˜ˆ: TPU, FPGA)์— ์ตœ์ ํ™”๋œ ๋ชจ๋ธ ์„ค๊ณ„ ๋ฐ ํ•™์Šต ๊ธฐ๋ฒ•์ด ๋ฐœ์ „ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • ์—์ง€ ์ปดํ“จํŒ…์„ ์œ„ํ•œ ์ตœ์ ํ™”: ๋ชจ๋ฐ”์ผ ๋ฐ IoT ๋””๋ฐ”์ด์Šค์—์„œ์˜ ํšจ์œจ์ ์ธ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ์‹คํ–‰์„ ์œ„ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์ค‘์š”ํ•ด์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • ๊ทธ๋ฆฐ AI: ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณผ ํ•™์Šต์„ ์œ„ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
  • ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ํ•™์Šต ์ตœ์ ํ™”: ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜๋Š” ๋ชจ๋ธ์˜ ํšจ์œจ์ ์ธ ํ•™์Šต๊ณผ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ๋ฐœ์ „ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

17. ๊ฒฐ๋ก 

๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตœ์ ํ™”๋Š” ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ณ  ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š” ํ•ต์‹ฌ์ ์ธ ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๋ณธ ๊ฐ€์ด๋“œ์—์„œ ์‚ดํŽด๋ณธ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋“ค์€ ๊ฐ๊ฐ ํŠน์ •ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค.

ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹, ์ •๊ทœํ™”, ํ•™์Šต๋ฅ  ์ตœ์ ํ™”, ๋ฐฐ์น˜ ์ •๊ทœํ™”, ๋“œ๋กญ์•„์›ƒ, ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•, ์ „์ด ํ•™์Šต, ์•™์ƒ๋ธ” ๋ฐฉ๋ฒ• ๋“ฑ์˜ ๊ธฐ๋ฒ•๋“ค์€ ๋ชจ๋ธ์˜ ํ•™์Šต ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ชจ๋ธ ์••์ถ•, ์–‘์žํ™”, ์ง€์‹ ์ฆ๋ฅ˜ ๋“ฑ์˜ ๊ธฐ๋ฒ•์€ ๋ชจ๋ธ์˜ ํšจ์œจ์„ฑ์„ ๋†’์ด๊ณ  ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ์˜ ๋ฐฐํฌ๋ฅผ ์šฉ์ดํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

๋”ฅ๋Ÿฌ๋‹ ์ตœ์ ํ™”๋Š” ๊ณ„์†ํ•ด์„œ ๋ฐœ์ „ํ•˜๋Š” ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค. ์ƒˆ๋กœ์šด ๊ธฐ๋ฒ•๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ง€์†์ ์œผ๋กœ ์ œ์•ˆ๋˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ, ์ด ๋ถ„์•ผ์˜ ์ตœ์‹  ๋™ํ–ฅ์„ ์ฃผ์‹œํ•˜๊ณ  ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋™์‹œ์—, ๊ฐ ๊ธฐ๋ฒ•์˜ ์žฅ๋‹จ์ ์„ ์ดํ•ดํ•˜๊ณ , ์ฃผ์–ด์ง„ ๋ฌธ์ œ์™€ ๋ฐ์ดํ„ฐ์…‹์— ๋งž๋Š” ์ตœ์ ์˜ ์ „๋žต์„ ์„ ํƒํ•˜๋Š” ๋Šฅ๋ ฅ์„ ํ‚ค์šฐ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ, ๋”ฅ๋Ÿฌ๋‹ ์ตœ์ ํ™”๋Š” ๋‹จ์ˆœํžˆ ๊ธฐ์ˆ ์ ์ธ ๊ณผ์ œ๋ฅผ ๋„˜์–ด ์œค๋ฆฌ์ , ํ™˜๊ฒฝ์  ๊ณ ๋ ค์‚ฌํ•ญ๋„ ํ•จ๊ป˜ ๋‹ค๋ฃจ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณ„์‚ฐ ์ž์›์˜ ํšจ์œจ์  ์‚ฌ์šฉ, ์—๋„ˆ์ง€ ์†Œ๋น„ ๊ฐ์†Œ, ๊ทธ๋ฆฌ๊ณ  ๊ณต์ •ํ•˜๊ณ  ํŽธํ–ฅ๋˜์ง€ ์•Š์€ AI ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๋…ธ๋ ฅ์ด ํ•จ๊ป˜ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋Œ“๊ธ€

์ด ๋ธ”๋กœ๊ทธ์˜ ์ธ๊ธฐ ๊ฒŒ์‹œ๋ฌผ

2025 ์‚ผ์„ฑ ๋ผ์ด์˜จ์ฆˆ ๋ธ”๋ฃจ ๋ฉค๋ฒ„์‹ญ์˜ ๊ฐ€์ž… ๋ฐฉ๋ฒ•, ์„ ์˜ˆ๋งค ํ˜œํƒ, ํšŒ์›๊ถŒ ํŒ๋งค ์ผ์ • ๋ฐ ์˜ˆ์ƒ ๋ณ€๊ฒฝ์‚ฌํ•ญ ์ด์ •๋ฆฌ

2025๋…„ ์ „๊ตญ ์•„ํŒŒํŠธ ๋ถ„์–‘ ์ผ์ • & ์ฒญ์•ฝ ์ „๋žต ์ด์ •๋ฆฌup

2025 ํ•œํ™”์ด๊ธ€์Šค ์‹œ์ฆŒ๊ถŒ๊ณผ ๋ฉค๋ฒ„์‹ญ ๊ตฌ์„ฑ, ๊ฐ€๊ฒฉ, ํ˜œํƒ ๋ฐ ๋ชจ์ง‘ ์ผ์ • ์•ˆ๋‚ด ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ธฐ